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Abstract
Feature matching is the most basic and pervasive problem in computer vision and it has become a primary component in big data
analytics. Many tools have been developed for extracting and matching features in video streams and image frames. However,
one of the most basic tools, that is, a tool for simply visualizing matched features for the comparison and evaluation of computer
vision algorithms is not generally available, especially when dealing with a large number of matching lines. We introduce VisFM,
an integrated visual analysis system for comprehending and exploring image feature matchings. VisFM presents a matching view
with an intuitive line bundling to provide useful insights regarding the quality of matched features. VisFM is capable of showing
a summarization of the features and matchings through group view to assist domain experts in observing the feature matching
patterns from multiple perspectives. VisFM incorporates a series of interactions for exploring the feature data. We demonstrate
the visual efficacy of VisFM by applying it to three scenarios. An informal expert feedback, conducted by our collaborator in
computer vision, demonstrates how VisFM can be used for comparing and analysing feature matchings when the goal is to
improve an image retrieval algorithm.

Keywords: information visualization, image processing, visual analytics

ACM CCS: Human-centred computing → Visualization, Visual analytics

shows an example of a feature matching visualization that suffers
from visual clutter. Obviously, most of the correct matchings are dif-
ficult to find by simply showing all of the matching lines. A correct
matching indicates that for a feature in one image, the correspond-
ing feature can be found in another image, even if that image has
been rotated, translated or scaled, as shown in Figure 1(b). Hence,
with an appropriate tool designed for the visual analysis of image
features and matchings, a better understanding and potential im-
provement of related computer vision algorithms could be achieved
more intuitively and efficiently.

Information visualization researchers have proposed many ap-
proaches to visualizing edge clouds, e.g. edge bundling [Hol06]. In
the edge bundling method, adjacent edges are visualized as a bun-
dled group to reduce visual clutter. Hence, visualization methods
based on edge bundling can be used to represent matching lines be-
tween image features. However, few methods have been presented
with the specific purpose of visualizing image features and their
matchings. This often requires the consideration of feature charac-
teristics such as image colour, image segmentation and matching
position. To the best of our knowledge, a comprehensive solution

1. Introduction

Image feature matching visualization has attracted considerable in-
terest in the field of computer vision due to increasingly stringent 
requirements for applications such as image retrieval and pattern 
recognition. A feature matching is a set of links between pairs of 
features. Each pair of matched features between two similar images 
is visually linked by a link (edge). The image features are extracted 
using standard computer vision methods, such as SIFT [Low04] and 
SURF [BTVG06]. Feature extraction and matching thus comprise 
a fundamental problem in the fields of computer vision and image 
processing. This problem lies at the root of numerous high-level 
research problems, such as image-based localization [QZH15], du-
plicate image discovery [WZL13] and object tracking [ZYS09]. A 
pair of images may contain many features and matchings. Therefore, 
visualizing these matchings over the source images in a straightfor-
ward manner may lead to visual clutter.

The feature matching accuracy can be easily computed using 
existing matching algorithms; however, the correct and incorrect 
matchings over two images are still difficult to discern. Figure 1(a)
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(a) Feature matchings on a pair of images (A and B).

(b) Examples of correct and incorrect feature matchings.

Figure 1: Visualizing feature matchings in a straightforward way
can lead to visual confusion. White bubbles outline the image
features.

for visualizing image features and their corresponding pair match-
ings has not been investigated from an information visualization
perspective.

In order to address these concerns, we present a visual analysis
system, called VisFM. VisFM clearly presents image features and
their matchings in order to support improvements in related com-
puter vision approaches, such as image retrieval applications. Based
on requirements specified by experts, we summarize the necessary
tasks of VisFM. Image feature data are extracted and clustered be-
fore further visual analysis can be performed. VisFM presents three
main views for the observation of image feature matchings: a match-
ing view, a feature view and a group view. We consider the image
background colour in the feature and matching views to facilitate
feature understanding and match finding. We also provide user-
friendly semi-automatic interactions for highlighting and querying
information from the desired region. A case study and feedback from
a domain expert demonstrate the effectiveness of VisFM. VisFM can
either provide support for computer vision researchers or extend the
fields of application of edge bundling techniques.

In summary, this paper proposes a visual analysis system with
the following contributions:

(1) an interactive visual analysis system for understanding and
exploring feature matching patterns;

(2) a novel layout design for visualizing links of image feature
matchings;

(3) an institute group view design for representing the relation-
ships of image segments and

(4) the extension of the scope of edge bundling applications.

2. Related Work

2.1. Image feature analysis

SIFT [Low04] is amongst the most common feature descriptors for
characterizing image features. Normally, SIFT features are repre-
sented by 128-dimensional feature vectors. The number of matching
SIFT feature pairs can be used to assess the similarity between two
images. A large number of matching feature pairs between two
images indicates a high similarity. Although SIFT is slower than
SURF [BTVG06], another image feature descriptor, it can achieve
higher accuracy. Thus, in many feature-based applications, such as
image-based localization [QZH15], SIFT is adopted as the preferred
image feature descriptor.

The similarity between two images can be calculated using the
feature matching approach. The simplest and most time-consuming
feature matching method is the brute-force method, which involves
computing the each similarity between pairs of feature vectors one
at a time. FLANN [ML09] uses kd-tree to accelerate the feature
matching process. The brute-force method offers higher accuracy
than FLANN, but FLANN is faster. Many methods can be used
to cluster image key points, such as k-means [KMN*02], spec-
tral clustering [vL07] and salient region matching [QZH15], to
improve the feature matching accuracy and speed up the match-
ing process. Spectral clustering is an extension of the k-means
algorithm based on a combination of dimensional reduction with
the k-means approach. Previous work has mainly focused on
how to improve the accuracy and reduce the time cost of fea-
ture matching methods; however, no convincing visual analysis
tool exists for the interpretation of feature patterns and matching
patterns.

2.2. Feature visualization

Image features are typically visualized as points on an image;
thus, a scatterplot is the most common visualization method. Many
scatterplot-based visualizations have been proposed, as summa-
rized by Ellis and Dix [ED07]. Attempts to render all the points
on the screen suffer from the overlapping problem because the
number of pixels is relatively much lower than the image data.
To solve the point overlap problem, a kernel density estima-
tion (KDE) method [EKS*96] has been used to find point pat-
terns in a visually friendly way. Splatterplots [MG13] were pro-
posed to further overcome the overlap problem by means of
KDE and multiple contours when the data set includes multiple
groups.

A number of visualization techniques have been developed from
a computer vision perspective to improve the human understanding
of image features. Vondrick et al. [VKP*16] proposed an accu-
rate visualization tool for understanding an object detection sys-
tem to improve feature space selection. Zeiler and Fergus [ZF14]
presented a visualization tool for visualizing and comprehending
convolutional image features, which are widely used in convolu-
tional neural network (CNN) based applications [KSH12]. Nev-
ertheless, the visualization of features on an image remains chal-
lenging because combinations of points on nearby pixels can lead to
colour conflicts, which will affect the ability to observe and compare
features.



2.3. Edge bundling

Edge bundling is a visual clustering method in which edges
are organized into groups to achieve an uncluttered visualization
layout. Many methods of edge clustering have been presented
from different perspectives, as summarized in the work of Zhou
et al. [ZXYQ13]. Holten [Hol06] presented an early work on edge
bundling. Later, force-directed edge bundling (FDEB) [HVW09],
a physical force-based approach, was developed to reduce edge
clutter in large graphs. Following the emergence of FDEB, many
edge bundling methods arose, most of which were focused on
increasing the speed and effectiveness of bundling. For example,
Telea and Ersoy [TE10] proposed an image-based approach (IBEB)
for rendering a skeleton of bundled edges. Ersoy et al. [EHP*11]
then extended the work on IBEB and presented a skeleton-based
method of iteratively transforming edges towards the skeleton of the
line set.

Hurter et al. [HET12] presented a fast image-based edge bundling
method for spreading control points while clustering edges. They
were the first to implement edge bundling on a GPU. Instead of pur-
suing speed improvements, Hurter et al. [HET13] performed edge
bundling for time-varying data. Afterward, Bach et al. [BRH*17]
presented a confluent drawing method for visualizing a graph by
considering network connectivity and information preservation. To
further reduce the complexity of bundled edges, a module-based
edge bundling method was proposed by Dwyer et al. [DMM*14].
A similar cluster-based approach was later considered by Sun
et al. [SMNR16].

Edge bundling has been frequently addressed in information visu-
alization research; however, current edge bundling methods have not
been deployed and evaluated for image feature matching analysis,
which requires the consideration of image colour and segmentation
information.

3. Task Analysis

Feature matching is frequently implemented in image processing
and computer vision. We collaborated with two domain researchers
to develop the VisFM system. One of them is a researcher in the
image processing field (P), and the other is from the computer
vision field (V). From several discussions, we identified the basic
requirements for the visual analysis of image feature matchings.
The main objective is to use VisFM to support the understanding
of feature matchings and the improvement of image retrieval
algorithms. We designed a prototype with a bundled matching
line layout and received very positive feedback from them. They
also offered many insightful suggestions based on the prototype
system design. Hence, the development of the VisFM system
was an iterative process. Based on the feedback from the domain
researchers, we confirmed the following requirements for the
system.

R1: Analysing the feature data for a pair of images. Both ex-
perts wanted the system to incorporate methods of basic fea-
ture extraction and matching. Moreover, expert P stipulated a
requirement for feature grouping since he wanted to be able to
observe the matchings segment by segment. Expert V speci-
fied a requirement for a feature density calculation. He claimed

that an overview of salient features is necessary, particularly
when thousands of image features are extracted from a pair of
images.

R2: Visualizing the image features. This requirement is aimed
at the visualization of feature characteristics, such as loca-
tion, size and angle. In addition, for the visualization of high-
density feature points, a hierarchical representation of the fea-
ture points is required to allow features to be observed in either
a macroscopic or a microscopic view.

R3: Revealing feature matchings. Feature matching visualiza-
tion without visual clutter is a pervasive requirement in the
computer vision field. A convincing representation will help
experts or other users to identify the matching lines of in-
terest. This is helpful for interpreting the results of existing
algorithms and finding shortcomings in these algorithms.

R4: Exploring feature matchings from different perspectives.
Given a structure of matching lines, the domain researchers
expressed the desire to be able to explore this structure from
different perspectives, based on aspects such as feature size,
feature angle, feature density and image segments. In addi-
tion, the ability to access matching information for two sim-
ilar segments in two different images will be beneficial for
understanding feature matching algorithms. Hence, the visual
analysis system must provide the relevant interactions.

R5: Overcoming the negative influence of image colour. Both
experts affirmed that they had suffered from disharmonious
colour representations on images in their previous research
work. Compared with the colour assignment in the absence
of an image background, the visualization of image features
and matchings while overcoming the influence of background
colour is more difficult; however, it is a critical task for in
visual analysis of clustered feature matchings.

R6: Comparing the matching results from different ap-
proaches. The domain experts expected to be able to use
the system to compare two matching results obtained using
two different approaches, one being an initial method and the
other one being an improved method. Such a comparison of
matching results can assist an expert in answering the question
of why mismatches occur.

4. System Overview

We developed a visual analysis system, VisFM (Figure 2), to ful-
fil the requirements specified by the experts. The VisFM system
includes the following components: (1) data analysis methods for
initializing the image feature data for the visual analysis system
(R1), (2) a visualization system with three main views to reveal the
image features and their matchings (R2, R3, R5) and (3) a set of
interactions for exploring the features and matchings (R4, R6).

Figure 3 shows the pipeline of the VisFM system. We assume that
the input to VisFM is a pair of images since matching data are typ-
ically generated between two images. The feature view comprises
a heat map and a zoom-in/zoom-out interactive view (R2). The
heat map is generated according to the estimated feature density.
The zoom-in/zoom-out view allows the user to observe the image
features at different levels of resolution. Based on the feature data
analysis (R1), a matching view and a group view are also designed to
display the feature matchings (R3). We transform the matching lines



Figure 2: VisFM system interface. (a) A matching view shows both
bundled matching data and segments of images; (b) a feature view
presents the feature data through a heat map and a zoom-in/zoom-
out interactive mode; (c) a group view shows the matching relation-
ships of feature groups between two images; (d) a feature scatterplot
view and a circular heat view provide additional explorations of the
features and (e) an option panel supports parameter setting and
interaction mode switching.

Figure 3: The pipeline of the VisFM system.

into bundled edges in the matching view to enable the separation
of groups of edges bundled together from other groups. The match-
ing view shows a microscopic view of the matchings, whereas the
group view shows the matchings at a macroscopic level. The group
view also reveals the correlations between pairs of groups from each
image. The ability to explore the feature matchings from different
perspectives is considered (R4). From the perspectives of feature
size and angle, the user is allowed to explore the matchings in a fea-
ture scatterplot view and a circular heat view. From the perspective
of feature position in an image, interaction with the image itself is
supported. From the perspective of feature groups, the group view
is designed for exploration of the matchings based on a selected
group. Since both the matching view and the feature view contain
the images themselves as the background, a contrasting colour as-
signment (CCA) approach has been proposed to resolve the issue of
colour conflict between the visualized items and their background
(R5). In the VisFM system, the user is allowed to adjust algorithm
parameters and to load different image data sets; thus, one can com-
pare results by running two instances of the VisFM system (R6).
For example, one instance of the system can be used to view the
matching results for a pair of original images, while another shows
the results for a pair of processed images.

The data analysis component of the system was developed based
on Flask, a web framework written in Python. The visualization

views and interactions were implemented using the D3 [BOH11]
JavaScript library.

5. Feature Data Analysis

In this section, we present the processes executed as part of the fea-
ture data analysis. We first introduce the characteristics of features
and their extraction from images. We then present the following an-
alytical methods applied to the features and their matchings: density
estimation, feature grouping and group matching.

5.1. Feature data

We adopt Lowe’s method [Low04] to transform an image into a large
number of feature vectors, each of which is invariant to image defor-
mations such as rotation, scaling and translation. Each feature vec-
tor consists of a 128-dimensional feature descriptor and three fea-
ture characteristics, namely the position on the image, the size and
the angle. The similarity between two images is assessed by in-
dividually calculating the Euclidean distance between each feature
vector pair. High-similarity images contain more matching features.
We assume that the input to our system consists of two feature sets,
one from each of two images, Ia and Ib. Each feature set can be rep-
resented as a set of feature points in a two-dimensional space. We
define the feature point sets as Fa = {fa0, fa1, . . ., fan} and Fb =
{fb0, fb1, . . ., fbn}, where n is the number of feature matchings. A
feature matching that represents a feature point in Fa is matched
with a feature point in Fb. Because we focus on the data analysis
of feature matchings, unmatched image features are ignored. Thus,
we define the set of matching lines as M = {mat0,mat1, . . ., matn},
where each mati represents a pair consisting of one element in Fa

and one in Fb. We adopt two methods, (1) the brute-force method
and (2) FLANN proposed by Muja and Lowe [ML09], to extract
matching pairs from the feature vectors. A brute-force matching
search is time-consuming; however, the matching accuracy is high.
By contrast, FLANN is faster in matching but has a much lower
correct matching rate compared with the brute-force method.

5.2. Feature point density

We use the KDE method to calculate the feature density. We adopt

the Gaussian function G(t) = 1√
2π

e− t2
2 as a kernel because of its

smoothness and parameterization. A detailed discussion of KDE
as a fundamental concept in statistics can be found in the work of
Silverman [Sil86]. The generated density map D shows the salient
feature data in the image, which can be used to define the relative
priority of feature regions during visual analysis.

5.3. Feature grouping

The basic intention of feature grouping is to simplify the structure of
the feature set by grouping features that belong to the same segment.
We adopt a fast superpixel method (SLIC) [ASS*12] to group pixels
into visually meaningful segments, thus moving from the pixel level
to the region level. We group the features based on the generated
segments. Feature grouping is implemented by considering image-
region connectivity in order to group features that belong to the
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Figure 4: An example of the feature grouping in an image space. A
solid circle indicates a feature point. Each hollow circle indicates a
group, where the circle radius represents the size of the group.

same segment. The feature grouping method is applied to both
images in the pair at the same time. Our feature grouping method
considers not only spatial proximity but also region connectivity.
Considering only spatial proximity, as in k-means [Mac67], leads
to perceptually improper groups. We define the feature groups of
Ia as ga = [ga1, ga2, . . ., gan] and the feature groups of Ib as gb =
[gb1, gb2, . . ., gbn]. We discuss the detail of superpixel generation
in Section 6.2. Figure 4 shows an example of the feature grouping
results in an image space. The position of each group is obtained
through the feature point centre calculation.

5.4. Group matching

The purpose of the group matching method is to find the matching
segments in a pair of images. This method takes the information
from both images and the feature matchings themselves into ac-
count to support further interaction and exploration of the feature
matchings. Through further interaction, we can identify only the
groups of features and their matchings that link one segment in
image A to a similar segment in image B. The basic idea of group
matching is to calculate the number of matching features that belong
to two corresponding groups from the two images. We formulate
this solution as follows:

caibj = cout{mat(fa, fb) ∈ M : fa ∈ gai, fb ∈ gbj}, (1)

where mat means a valid feature matching between two fea-
tures and cout indicates the set number. There is a link eaibj be-
tween gai and gbj as caibj > 0. The topology of the matchings
between groups is denoted by GG = (GV, GE), where GV =
[ga1, ga2, . . ., gan, gb1, gb2, . . ., gbn] denotes the nodes and GE =
[ea1b1, ea2b1, . . ., eanbn] indicates the links. Figure 4 shows an exam-
ple of the group matching result in an image space.

Unlike feature matching, group matching is uncertain because the
segment shapes in image A and image B are most often different.
Hence, we define the group matching weight (GMW) to indicate
the correct matching rate of a group (segment). GMWs can be used

(a) A group in image A with a
higher GMW.

(b) A group in image A with a
lower GMW.

Figure 5: A comparison of different GMW. A higher coherence of
groups leads to a higher GMW.

to guide further visual design (Section 6.4) for the exploration of
feature matchings. If gai is matching to gbj and gai is also matching
to the neighbours of gbj , we consider gai has high GMW. A high
GMW indicates a high probability of correct feature matching, and
a low GMW indicates a potential for incorrect feature matching
between groups.

We define the linked groups to gai as a complete graph Gai =
[Vai, Eai], where Vai = {gbj , caibj > 0} indicates the graph nodes
and Eai indicates the graph edges. We then transform the problem
of GMW calculation to a problem of node coherence calculation as
follows:

wai = 1

N (Eai)

∑

gα∈Vai,gβ∈Vai

caibα+caibβ

2cai

dmax−dist(gα, gβ )

dmax
, (2)

where i and j are the group indices for image A and image B,
respectively; cai is the number of features in group gai; caibj is the
number of matched features between gai and gbj ; N (Eai) indicates
the number of edges; dmax indicates the maximum group distance
and we set it as the diagonal length of the image; dist is a function
for measuring the Euclidean distance between two group centroids
in image B. Similarly, we can calculate the GMW of groups in
image B and then lead to the final group matching weights GMW =
[wa1, wa2, . . ., wan, wb1, wb2, wbn]. Figure 5 shows a comparison of
the different GMW.

6. Visual Design

The objective of the visualization design of VisFM is to assist experts
in interpreting feature data to support further analysis. The complete
visualization design includes a matching view, a feature view, a
group view and two additional feature sub-views for the exploration
of matching data. In addition, we apply a CCA to the matching
view and the feature view. Moreover, the VisFM system supports
multiple user-friendly interactions with the various views.

6.1. Interface

Figure 2 shows the user interface of VisFM. It consists of five
interactive components: (1) a matching view that depicts either the
bundled matching data or the segments of an image; (2) a feature



view that presents a heat map of the feature data and detailed feature
characteristics at different levels; (3) a group view that shows the
relationships between matching groups in two images; (4) a feature
scatterplot view and a circular heat view that assist the exploration
of matching data and (5) an option panel that provides functions
for parameter setting and interaction mode switching. VisFM also
provides a menu panel that provides additional interactions, such as
data set loading and bundling mode switching.

6.2. Matching view

The main purpose of the matching view is to separate matching
line groups to present an uncluttered layout. There are two sub-
views in the matching view. The left sub-view displays image A
as a background, whereas the right sub-view displays image B as a
background. We first segment the images based on pixel connectivity
and then apply a group-based edge bundling (GBEB) approach to
the matching lines to achieve an uncluttered layout.

An important basis for the matching view is a superpixel ap-
proach for revealing feature matchings segment by segment. As dis-
cussed in Section 5, we use SLIC, a fast superpixel-based method, to
generate high-quality and visually meaningful segments. The main
function of SLIC is to divide the image into uniform superpixels
as shown in Figure 6(b) and then to iteratively adjust the pixels
in each superpixel. The superpixel size is initialized in advance.
During each iteration, each pixel in the image is assigned to its
closest superpixel by computing the colour distances between it and
its neighbouring superpixel centres. Iteration stops when no further
pixel has been assigned to a neighbouring superpixel. Figure 6(c)
shows an example of the final superpixels of an image. Generated
superpixels support the feature grouping and the complete object
selection (Figure 6d). Feature points in the same superpixel (seg-
ment) will be grouped together. Complete object selection is helpful
for the object matching analysis. A related interaction, brushing, is
discussed in Section 6.6.

As mentioned in Section 5, the image features are grouped accord-
ing to the image segmentation. Our GBEB procedure is performed
by considering the matched groups in image A and image B. For the
features of a group in image A (gai), we find the matching features
in a group of image B (gbj ). If the number of matchings with a
group in image B is greater than 1, we apply GBEB to separate the
corresponding matching lines from the others. We define a set of

Figure 6: An example of the superpixels generation and selection.
(a) Original image. (b) Initial uniform superpixels. (c) Final super-
pixels. (d) Complete object selection.

Figure 7: An example of the group-based edge bundling approach.
(a) Matching lines without edge bundling. (b) Matching lines with
our edge bundling.

matching lines between two groups as a bundle. The key idea of
GBEB is to group the bundle in a block as shown in Figure 7(b),
which is designed to represent the bundle in an organized and con-
trollable form. In our system, the spatial characteristic of the bundle
block does not relate to the spatial correspondence of the underlying
image. We have interviewed our cooperating experts and they said
the influence from the additional spatial correspondence was slight
when they were using VisFM. It is easy for them to identify the bun-
dle block as a junction that connects the feature points of two groups.

Bundle block design is inspired by the work of Biset [SMNR16];
however, the design detail and the usage scenario in our system are
different. There are three advantages of the bundle block design.
First, a rectangle is easier to be selected in a visual exploration than
selecting a set of matching lines. Second, the regular arrangement
of the matching lines at two sides of the bundle block is convenient
for the selection of a single matching line. Third, a bundle block
reduces the implementation difficulty of an uncluttered matching
line layout.

There are five parts of the GBEB approach. First, we calculate the
left feature centre (cena) and right feature centre (cenb) of a bundle.
Second, we initialize the bundle block position as bb = 1

2 (cena +
cenb). Third, we apply the force-directed approach [FR91] on all
bundle blocks in order to avoid the bundle block overlapping. Force-
directed approach separates a bundle block from others as shown
in Figure 8(b). Fourth, after updating the bundle block position,
linking nodes at two sides of the bundle block are placed one by one
as shown in Figure 7(b). Finally, for the two sets of the matching
lines separated by a bundle block, we apply the FDEB [HVW09]

Figure 8: An example of the bundle block layout adjustment. (a)
Bundle blocks without layout adjustment. (b) Bundle blocks with
force-directed layout.



(a) Original bundle blocks layout.

(b) After applying force-directed layout adjustment and CCA.

Figure 9: An example of the optimized bundle blocks layout and
colour assignment.

technique to implement edge bundling, as shown in Figure 7(b).
Figure 9(b) shows an example of the optimized bundle blocks layout.

6.3. Feature view

The feature view comprises two view modes: a heat map and a
zoom-in/zoom-out mode. The heat map visualization was suggested
by expert V, whose area of research is saliency map detection and
analysis. He emphasized that ‘Saliency indicates the most important
and informative parts of a scene; thus, it can improve the efficiency
of a visual analysis system of the feature matching’. Therefore, we
present a heat map approach for enhancing salient regions. A feature
density map is estimated using the method described in Section 5.
We use a colour mapping to indicate the different density scales
as shown in Figure 10(b). The zoom-in/zoom-out mode, which was
inspired by the visualization of geographical data on a map, provides
the ability to observe features at different levels to further overcome
the problem of feature clutter on the original image. The detailed
size and angle of a feature, which is represented by a circle and a
line, can be observed in the zoom-in/zoom-out mode. The zoom-
in/zoom-out mode also avoids the need to adjust the interface layout
for different image sizes and resolutions. Figure 10 is an example
of the feature view in different levels of details (left-to-right: from
low detail to high detail).

In addition, we designed two additional sub-views (Figure 2d), for
visualizing statistical feature characteristics. The feature scatterplot
view shows a distribution of the feature angles and sizes in two-
dimensional space. It allows the user to effectively select features in
a given range of angle or size. The cluster pattern in two-dimensional
space can be found through a scatterplot view. The circular heat view
represents the heat information of the features in a polar coordinate
system. Arc glyphs in the circular heat view indicate the statistical
angles of the features. The distance between an arc glyph and the
centre of the view indicates the statistical size of the features. A
larger distance means a larger feature size. The circular heat view

(a) Feature representations at different level of detail.

(b) Feature heat maps at different level of detail.

Figure 10: Examples of the feature view. Feature view is allowed
to switch the level of detail.

is helpful for image matching analysis in the case of repetitive
patterns. The heat information related to the size and angle spaces
could effectively represent the similarity between two images. These
two sub-views not only represent the feature information in another
form but also provide abundant interactions for feature matching
selection.

6.4. Group view

The group view is designed for the visualization of matching data at
a macroscopic level. The correspondences between feature groups
in the two images are visualized in the group view. Finding the
matching is difficult when there are a number of feature groups
in a pair of images because of the group overlapping problem.
Figure 4 is an example of the group overlapping problem in an
image space. Therefore, we design an organized form to visualize
the group matchings. The group view is separated into three parts.
The left part shows the group nodes as summarized from image A,
whereas the right part shows the group nodes as summarized from
image B. We transform group nodes in an image space to a vertical
space in order to avoid the node overlapping in the visualization.
Figure 11(a) shows an example of our approach, where a group with
no feature is hidden. The length of each node indicates the number
of features. The colour depth of the node indicates the GMW. The
calculation of the GMW is described in Section 5. If the GMW is
high, we assign a deep colour to the node. Otherwise, we assign a
light colour to it. A light colour indicates a group pair that includes
potentially incorrect feature matchings. The middle part visualizes
the relationships between the groups.

In the prototype of group view as shown in Figure 11(b), we
have not considered the components of a group, which indicate a
number of feature sets that are matching to the groups in another im-
age. The improved group view, using Sankey diagram as shown in
Figure 11(c), provides a more intuitive matching result. Sankey dia-
gram was mainly designed for visualizing event changes [SAA*11],



Figure 11: Group view design for the group matching visualization.
(a) Space transformation. (b) Edge bundling. (c) Sankey diagram.

Figure 12: Contrasting colours can more effectively draw human
attention. (top) Points and arrows with non-contrasting colours.
(bottom) Points and direction arrow with contrasting colours.

such as the event convergence and divergence. We adopt Sankey di-
agram because of its advantage of visualizing many-to-many data.
Although edge bundling enables an uncluttered layout for the group
matching lines, it is difficult to identify the one-to-one matching
detail as shown in Figure 11(b).

6.5. Contrasting colour assignment

A CCA approach is applied in the feature view and the matching
view because these views include a hybrid visualization of the image
and vectorial element. A visualization of the vectorial elements on
an image, such as points and lines, is subject to colour influence for
a human observer, thus affecting the user’s ability to find patterns
in these views. The importance of assigning contrasting colours
has been discussed in the works of Lin et al. [LRFH13]. Figure 12
illustrates that the visual perception of humans is highly sensitive to
the colour contrast against an image background.

We present a CCA model to guarantee that our visualizations
will easily draw the user’s attention by ensuring their luminance
contrast. The CCA model follows the web content accessibility
guidelines [CCRV08]. In the CCA model, we formulate the contrast
ratio between two colours as follows:

Contr (c1, c2) = max(Lumi(c1), Lumi(c2))

min(Lumi(c1), Lumi(c2))
, (3)

where Lumi is the illumination calculation for a colour [CCRV08].
For the colour assignment, we prepare 64 colour candidates (cani ,
i ∈ [1, 64]) with an average RGB distribution in advance. We for-
mulate the CCA for a feature point as follows:

Contc(f ) = cani, Contr (colb(f ), cani) > σ, (4)

where colb is the background colour of a feature point f , Contc(f )
is the corresponding contrasting colour and σ is a free parameter
that defines the termination condition for contrasting colour finding.
The contrasting colour finding is performed on 64 colour candidates
(cani). We set σ to 5.0 to avoid excessive time consumption for
finding the colour with the maximum contrast ratio. According to
the web content guidelines [CCRV08], the maximum contrast colour
ratio is 21. We assume that σ = 5.0 is enough for CCA. Based
on the CCA method, we can assign a contrasting colour for each
feature circle and angle line in the feature view. For the colour
assignment of the bundle block in the matching view, we adopt the
same approach. For the colour assignment of the matching lines in
a matching view, we assign the contrasting colour by considering
all background colours of the matched feature points in a group.
All matching lines belonging to the same group matching will share
the same colour. We formulate the CCA of a matching line as
follows:

coll(gα, gβ ) = arg max
cani ,i∈[1,64]

∑

f ∈(gα∪gβ )

Contr (colb(f ), cani), (5)

where gα and gβ indicate a pair of matched groups. Figure 9(b)
illustrates the harmony CCA result of the matching lines and the
bundle blocks.

6.6. Interactions

We provide three basic interactions, namely brushing, lassoing and
touching, in our system to assist users in finding and understanding
feature matchings.

Brushing Based on prior works on superpixels and feature group-
ing, we provide the brushing interaction to highlight only the match-
ing elements corresponding to certain segments and bundle blocks.
The user can select segments or bundle blocks by brushing, which
will cause all related contents and the corresponding matching lines
to be highlighted. Because the superpixel method extracts only small
segments, these segments will typically constitute a large shape with
an accurate contour. Hence, brushing is a suitable operation for the
manual assignment of a complete shape in an image for a further
analysis of features and matchings. Our interface checks whether
a brush trajectory crosses a target. Figure 13 shows that our in-
teraction can support matching visualization in the desired region
through simple brushing.

Lassoing Lassoing is designed for defining an irregular selected
area. We employ this interaction in the feature scatterplot view
and the feature view. The lassoing operation generates a trajectory
based on a number of marker points. We then adopt the work of
Moreira and Santos [MS07] to generate a concave hull representing
the selected region. All related elements in this concave hull will



(a) A brushing trajectory through
segments.

(b) Only the matching lines
linked to the selected segments
are highlighted.

(c) A brushing trajectory through
bundle blocks.

(d) Only the matching lines
linked to the selected bundle
blocks are highlighted.

Figure 13: An example of the brushing interaction.

(a) Lasso selection in
the magnified feature
view.

(b) Highlighted feature points and match-
ing lines in the matching view.

Figure 14: Lassoing selection of the feature points in the feature
view.

be highlighted. Figure 16(c) depicts an example of the lassoing
interaction in the feature scatterplot view. Figure 14 outlines a lasso
interaction example in the feature view.

Touching The touching interaction is implemented only in the fea-
ture view, the group view and the circular heat view. If a user
touches an element in one of these views, other related elements
will be highlighted. For example, if the user touches an arc glyph
in the circular heat view, all features and all matching lines in the
matching view that link to this element will be selected. In the
group view, touching a group block will cause the related bundled
matching lines to be highlighted in the matching view as shown in
Figure 15.

7. Case Studies

We evaluated the usefulness of the VisFM system in three distinct
usage scenarios.

(a) Selected group node. (b) Highlighted bundles in a matching view.

Figure 15: Touching on a group node in the group view leads to
the bundles highlighting in the matching view.

(a) Selected group node and group
matchings in a group view.

(b) Selected group node and group
matchings in a group view.

(c) Selected group node and group
matchings in a group view.

(d) Selected group node and group
matchings in a group view.

Figure 16: Matching line exploration on a special object of the
images through a lassoing interaction.

7.1. Visual evaluation of SIFT

To visually verify that the key-point features identified by SIFT are
invariant to transformations, such as rotation and scale, we used
VisFM to visualize the feature matching result of SIFT. In this
usage scenario, we set the matching method to FLANN and the
segment size to 84. First, we captured an image A in a real scene
and captured an image B with a 165ºforward camera rotation and a
bit magnification. We then input these two images to VisFM. From
a simple visualization of all matching lines, it was difficult to find
the matched and mismatched regions on the image as shown in
Figure 16(a).

Through the observation in a feature view, we found that the
key features of the input images, such as on the white signs, have
large feature size. Thus, we adopt lassoing operation in the feature
scatterplot view to select large size features and highlight the related
matching lines. Through the filtered matching line visualization, we
observed that all features are matched well on the white signs. By
using VisFM, we verified that SIFT was effective for matching an
image from a set of transformed images.

7.2. High-density feature exploration

The pair of images considered in this case study included thou-
sands of features; thus, the high-density features and matching
lines caused severe visual clutter. In this usage scenario, we set the



(a) High-density feature
points.

(b) A feature heat map. (c) Magnified feature
view.

Figure 17: High-density feature exploration in the feature view.

Figure 18: Matching lines exploration in the matching view. (a)
Crowd matching lines. (b) Touching selection in the group view. (c)
Highlighted bundles in the matching view.

matching method to FLANN and the segment size to 64. An image
with abundant features requires smaller segment size in order to
analyse features in a microcosmic form. Since directly visualizing
all feature points was difficult to reveal the significant regions for
further analysis, we switched to the heat map option to observe
the density of the features as shown in Figure 17(b). In the heat
map, we found three high-density regions. We then zoomed in to
the second one to see the feature distribution. In the magnified view
as shown in Figure 17(c), we found that many feature points are
detected in the same position with distinct angles. It explained why
the features in the magnified region were of high density. In order
to further explore the feature matchings on the selected region, we
highlighted the matching bundles related to it through a touching in
the group view (Figure 18b). Figure 18(c) shows our more intuitive
matching result compared with the unbundled layout as shown in
Figure 18(a). The wrong matching result in Figure 18(c) provides
a clue that the improvement of FLANN should take multi-angle of
the feature into account.

7.3. Visual evaluation of matching approaches

In this usage scenario, we wanted to evaluate the performance of
the FLANN algorithm. Figure 19(a) showed an intuitive correct
matching result processed by using FLANN matching algorithm
between a pair of identical images. However, which region of im-
age B matches the highlighted region in image A was not clear
in Figure 19(a). In VisFM, the bundle block brushing selection as
shown in Figure 19(b) and the group view as shown in Figure 19(c)
showed a very clear matching structure without overlapping.

Hence, we summarized that FLANN matching algorithm per-
formed well on the matching of two identical images.

Figure 19: The matching view and the group view clearly indicate
the matching result of the image segments. (a) All matching lines.
(b) Highlighted bundles. (c) Group matchings.

Figure 20: Exploration of the matching performance between two
algorithms.

We selected the second pair of images for comparing the matching
performance between FLANN and brute-force method. The selected
images were highly similar; however, the correct feature matching
rate would be low because of the difference in the content displayed
on the TV. We found that the content on the TV screen was ignored
by using the FLANN method. Figure 20(a) showed that fewer fea-
ture matchings were generated related to the top part of the image.
Less crossing matching links in Figure 20(a) showed that FLANN
achieved a higher matching rate than using brute-force method as
shown in Figure 20(b). We then highlighted the bundles through
the touching interaction (Figures 20c and d) in the group view and
observed the matching result in the matching view. Figure 20(e) rep-
resented the correct matching, while Figure 20(f) showed the wrong
matching from the TV screen to a bottle. We shared our finding
with the related expert and he explained that FLANN was based on
the nearest neighbour search thus avoided the wrong matching with
large displacement.

8. Informal Expert Feedback

We cooperated with an expert who tested the use of VisFM for un-
derstanding and improving an image retrieval algorithm in his field.
Image retrieval is the task of finding the most closely matching



image from a data set of thousands of images based on an input
image. The basic strategy of the expert was to improve the effec-
tiveness of image retrieval based on an image smoothing method.
When the images in a data set have been smoothed, the speed of
image retrieval will be improved because of the reduction in the
number of features; however, the correct matching rate of state-of-
the-art matching methods on these smoothed images is simultane-
ously reduced. Therefore, the expert wanted to use VisFM to observe
the change in matching behaviour when images are subjected to a
smoothing operation. His goal was to explore the potential improve-
ment of the matching method.

The expert selected two images with abundant features as an ex-
ample to perform a visual analysis of feature matchings. He chose
FLANN as the feature matching method. First, into one instance
of the VisFM system, he put two images of the same scene that
were captured from different camera poses. He used another in-
stance of the VisFM system loaded with two smoothed images to
compare the feature matchings between the original images and
the smoothed images. The feature view and the matching view in
VisFM provided an overview of the image feature data. The expert
noted that the feature view was helpful for assessing the effective-
ness of the smoothing methods. Using the VisFM system, he was
able to select feature points on the image structure and to observe
the corresponding feature matchings. If a smoothing method can
preserve the structure of an image, then many key features can still
be extracted from the smoothed image.

The expert applied the L0 Gradient Minimization (LGM)
method [XLXJ11] to smooth the pair of images and compared the
corresponding feature matching result with the result obtained on
the images when they had been smoothed using the relative total
variation (RTV) approach [XYXJ12]. At the beginning, the expert
preferred RTV because it was an improved smoothing approach
of LGM. However, the result in VisFM surprised him that LGM-
based smoothing could produce a better feature matching result than
RTV-based smoothing as shown in Figure 21. Although the RTV-
based method preserved the image structure after smoothing, the
expert found that a few sparse incorrect matchings between the two
smoothed images still remained as shown in Figure 21(b). These
incorrect matchings could still influence correct image matching in
an image retrieval application.

The expert then studied the group relationships in the group
view. He found that LGM-based group node had higher GMW
value compared with the RTV-based result. He touched a group
node with a deep colour and observed almost correct segment
matching in the matching view. Later, he magnified the cor-
rectly matched features on LGM-based images in the feature view
and found some un-smoothed features on the smoothed regions,
which might cause the higher correct matching rate of LGM
approach.

Based on the observations described above, he designed and
proposed an improved feature matching approach that was more
suitable for the LGM-based smoothed images. The proposed ap-
proach considered the feature group matching results to improve
the correct matching rate and speed up the image retrieval process.
The expert named the proposed approach structure-based image
retrieval.

(a) Group matching result (RTV). (b) Bundle matching result (RTV).

(c) Group matching result (LGM). (d) Bundle matching result (LGM).

Figure 21: The matching result comparison of two smoothing ap-
proaches. A dotted circle indicates a wrong group matching.

(a) Original textile im-
ages.

(b) Smoothed textile im-
ages.

(c) Feature points of the
smoothed textile images.

(d) Feature characteristics of the original images.

(e) Feature characteristics of the smoothed images.

Figure 22: Feature characteristics and the matching results of the
smoothed images.

Furthermore, the expert applied the VisFM system on a pair of
the textile images in order to verify if his approach was suitable
for the textile image retrieval application. Image analysis and re-
trieval methods are frequently applied in textile research; thus, an
understanding of feature matching is required for textile images
with repetitive patterns. He applied LGM approach on the original
textile images and generated the smoothed textile images as shown
in Figures 22(a) and (b).

In order to observe the feature difference of two pairs of tex-
tile images, he started up two VisFM systems on two displays.
Originally, he observed the feature characteristics in a feature view



as shown in Figure 22(c). Then, he adopted the brushing selec-
tion on the segment in an image in order to observe the matched
segments in another image. However, the correct matching rate
was not achieved. Later, he found that the circular heat view as
shown in Figures 22(d) and (e) was helpful for image matching
analysis in the case of repetitive patterns. The feature-angle-based
matching selection was convenient for exploring textile feature
matchings.

The expert planned to finalize the proposed approach and apply
it in a real-world image retrieval application. In addition, the expert
expressed that he appreciated the value of the CCA when observing
the features and matchings on the smoothed images.

9. Conclusions

In this paper, we present a new visual analysis system, VisFM,
for understanding and exploring image feature matchings to sat-
isfy the requirements of domain researchers. We design feasible
visualization views to assist users in effectively interpreting and
retrieving image features and pair matchings. We also offer a rich
set of interactions for exploring image features and matchings and
for enabling parameterization of feature matching algorithms. We
introduce the edge bundling technique into a new domain and pro-
vide a complete system that is simple to implement and use. By
using a visual analysis system, a user can gain a more intuitive un-
derstanding of feature matching algorithms. Case studies and the
expert feedback demonstrate the usefulness and effectiveness of
VisFM.

There are still a few limitations of the VisFM system. First, the
comparison of results for two pairs of images cannot be performed
in a single instance of the VisFM system. Currently, the user must
compare the matching results for two pairs of images by means of
two instances of the VisFM system on two different displays. A
potential improvement would be to integrate statistical information
for two pairs of images in the same view. Second, the interactions
in the group view should provide a more intuitive means of locat-
ing related segments and their matchings. Thus, the work of Map-
Trix [YDGM17] seems to offer a feasible many-to-many approach
for further improving the visualization and interaction performance
in the group view.

The approaches adopted in VisFM can be applied to image fea-
tures detected through other approaches, such as SURF [BTVG06]
and HoG [ZYCA06]. Another desirable extension of the VisFM sys-
tem, as noted by the expert, is to consider dynamic feature match-
ings, e.g. the analysis of matchings between a single image and a
video. Moreover, we plan to consider the group hierarchy in the
matching view to further explore the matching lines.
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